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Abstract

Data centers increasingly deploy commodity servers with
high-speed network interfaces to enable low-latency commu-
nication. However, achieving low latency at high data rates
crucially depends on how the incoming traffic interacts with
the system’s caches. When packets that need to be processed
in the same way are consecutive, i.e., exhibit high temporal
and spatial locality, caches deliver great benefits.

In this paper, we systematically study the impact of tempo-
ral and spatial traffic locality on the performance of commod-
ity servers equipped with high-speed network interfaces. Our
results show that (i) the performance of a variety of widely
deployed applications degrades substantially with even the
slightest lack of traffic locality, and (ii) a traffic trace from
our organization reveals poor traffic locality as networking
protocols, drivers, and the underlying switching/routing fab-
ric spread packets out in time (reducing locality). To address
these issues, we built Reframer, a software solution that de-
liberately delays packets and reorders them to increase traffic
locality. Despite introducing ps-scale delays of some packets,
we show that Reframer increases the throughput of a network
service chain by up to 84% and reduces the flow completion
time of a web server by 11% while improving its throughput
by 20%.

1 Introduction

Recent advances in networking hardware have boosted the
speed of Network Interface Cards (NICs) and packet switch-
ing devices, facilitating faster Internet access [1, 2] and
improving performance in datacenters [3]. At the same
time, this sudden growth in networking speeds has not been
followed by a similar trend in Central Processing Unit (CPU)
core frequencies and memory access latencies [4,5]. This
places tremendous pressure on today’s commodity server
architectures. Accessing main memory for each packet
is prohibitive, thus high-speed packet processing inher-
ently requires packets and the instructions & data needed to

process these packets to reside in cache memories to the
greatest extent possible. For these reasons, recent efforts
have explored ways to optimize cache utilization, for instance,
(i) using Direct-Memory Access (DMA) or Remote DMA
(RDMA) [6] to eliminating CPU involvement in the reception
of incoming packets, (ii) with Data Direct I/O (DDIO) [7, 8]
completely avoiding main memory, (i) placing incoming
packets into a Last Level Cache (LLC) slice as close as
possible to the core responsible for handling these packets [9],
and (iv) realizing Network Function (NF) chains without
inter-core communication (thus eliminating LLC cache pollu-
tion) [10] and with whole-stack optimizations (minimizing
LLC accesses) [11].

Optimal utilization of memory caches requires that packets
to be processed (with a given set of instructions and data)
arrive as close as possible in time to each other, i.e., high
temporal and spatial locality of the received packet stream. In
this paper, we investigate the impact of packet ordering on the
performance of I/O-intensive applications. We first measure a
variety of performance metrics including throughput, average
processing cycles per packet, average CPU instructions per
packet, etc., as functions of the level of traffic locality of a set
of streams of packets . In our experiments, the relevant data
is both packets belonging to the same flow and the metadata
that is associated with them. Our investigation reveals an
unexpected sharp performance degradation (up to a factor
of 3x) with even the slightest lack of temporal and spatial
traffic locality for packets that could have been processed
using the same instructions and data. As an example, we
discovered that the number of CPU cycles per packet for an
iperf server were reduced by a factor of 2 — 3 x when packets
arrive in small bursts of 5 packets belonging to the same flow
as opposed to bursts of a single packet.

In practice, there are several hindrances to cache-optimized
I/0O processing. First, slow NICs at the client do not produce
bursts of packets that will arrive “back-to-back™ at a receiver
with a faster NIC. Moreover, the multiplexing of different
traffic flows along the path from a client to a server results
in packets belonging to a client’s flow being spaced apart



(i.e., interleaved with other flows), thus diminishing local-
ity. Even worse, we observe the existence of an increasing
friction between emerging networking trends, which advocate
that congestion control mechanisms pace packets, i.e., spread
packets in a flow apart from each other as much as possi-
ble to minimize the risk of congestion in the network (see
§3), and the desire to process incoming packets in memory
caches to the greatest extent possible (due to trends in com-
puter architecture) [12]. To understand whether real-world
traffic exhibits sufficient ordering, we analyzed a real-world
traffic trace from one of the packet gateway interfaces of our
organization. This traffic exhibits a very low level of spatial
locality, as more than ~60% of the packets belonging to the
same flow are interleaved with packets belonging to other
flows, which is far from ideal conditions for cache-optimized
packet processing.

These apparently completely opposite requirements of
(i) pacing traffic for better network-level statistical multi-
plexing and (ii) processing packets in bursts for better cache
effectiveness calls for a solution that satisfies both require-
ments at the same time. Based on the above, we explore
the counter-intuitive idea of increasing packet processing
throughput by deliberately delaying and reordering packets
before they reach the application running on the server(s),
thus rebuilding high traffic locality. We built Reframer, a net-
work function that leverages this idea, to buffer and reorder
packets between different flows. By introducing Reframer at
the destination network (or directly at an end server), we (i)
maximize the number of subsequent cache hits in the servers,
thus reducing the processing time for each burst and (ii) are
compatible with the emerging pacing-based congestion con-
trol mechanisms (e.g., BBR [13]) as we do not affect the
pacing of the packets across the Internet. Reframer can be
deployed on the same server where one needs to increase
cache hit performance (e.g., CPU core and/or SmartNIC) or
upfront as part of a network function service chain to improve
the throughput of the service chain itself by up to 60% (see
§5.2) and subsequent web servers throughput by 20% while
reducing the flow completion time by 11%, despite delaying
the individual packets. Moreover, we show that Reframer
improve performance an order of magnitude more than flow-
oblivious batching [14], showing the need to increase per-flow
spatial locality.

Contributions. In this paper, we:

» Unveil that trends in networking, spreading packets apart,
are antithetical to today’s high-performance computer archi-
tectures, which require bursty communication to efficiently
use cache memories for high-speed networking.

 Systematically measured the performance degradation due
to the lack of spatial locality in the streams of packets pro-
cessed by servers for a variety of I/O-intensive applications
(including large data transfers and network functions). Our
results show significant performance degradation, up to a

factor of 2 — 3 x, mainly due to cache misses (§2).

Analyzed the levels of spatial and temporal locality in real-

world traffic captured between our organization and our ISP.

This traffic shows poor locality, which leads to sub-optimal

performance at each of the servers (§3).

* Built a Reframer prototype to reorder packets, thus exploit
servers’ caches when processing packets at high speed (§4).
Reframer improves the throughput and latency of chained
NFs by up to 84% and 46% respectively, using a realistic
packet trace and various Reframer deployments (§5).

2 How Much Does Order Matter?

This section shows how explicit packet ordering increases
temporal and spatial locality and, consequently, boosts the
performance of real-world applications. Our results show
that, when packets belonging to the same flow are inter-
leaved by even a few other packets, the latency of a packet
processing application may increase by more than 2x be-
cause of a higher number of cache misses and executed
CPU instructions. These results motivate our Reframer sys-
tem, whose goal is to build per-flow batches of packets that
can be submitted to the servers, as opposed to batches of
arbitrary packets belonging to different flows as in state-of-
the-art software switches (e.g., Batchy [14]).

The experimental methodology used in this section is
described in §2.1. We decompose the effects of packet
ordering into three categories: network stack effects (§2.2),
software switching effects(§2.3), and more advanced NF
effects (§2.4).

2.1 Experimental Setup

Testbed. All the experiments in this section use the same
testbed. Two back-to-back interconnected servers, each with
a single-socket 8-core Intel® Xeon® Gold 5217 (Cascade
Lake) CPU clocked at 2:3 GHz and 48 GB of DDR4 RAM
at 2666 MHz. Each core has 2x32KiB L1 (instruction &
data caches) and 1 MiB L2 caches, while one 11 MiB LLC is
shared among the cores. Each server has a dual port 100 GbE
Mellanox ConnectX-5 NIC with firmware version 16.28.1002.
Hyper-threading is enabled on both servers and the Operating
System (OS) is the Ubuntu 18.04 distribution with Linux
kernel v5.3. One server acts as a traffic generator and receiver
while the other server is the Device Under Test (DUT). We
also utilized the Linux perf tool on the DUT during the
execution of the experiments to monitor CPU performance
counters (e.g., CPU cache misses).

Spatial locality factor (SLF). We define SLF as the average
number of packets, in the same flow, that arrive back-to-back
at the DUT. For example, if there are three flows (A, B, and
C) and SLF = 1, the DUT receives packets in the pattern
"ABCABC...". For SLF =2, the pattern is "AABBCC...".



(a) CPU cycles per packet. (b) L1 cache misses per packet.
Figure 1: Impact of packet spatial locality on the performance dparf server, with and without LRO.

2.2 Network Stack Effects Two explanations for the bene ts of spatial locality are:

Packet ordering h found i t on th ; (1) Fewer cache missesOrdered packets increase L1 cache
acket ordering has a protound Impact on the pertormancey,;; 4, a5 common per- ow data structures are fetched only

of general purpose network stacks and their applications,, o o o) packets. Fig.1b shows that the number of L1

especially TCP receive-side processing. In these experimentsct,iche misses per packet decreases by 54% when packets are
we show that lack of traf ¢ locality greatly degrades CPU perp y Ny P

tilizati 10 a factor o8 h histicated TCP processed back-to-back. Particularly, we observed an increase
utiiza |on_(up o afactor o8 ) evenwhen sophisticate in performance for the “__inet_lookup_established” Linux
accelerations are used.

) . _ kernel routine. This function performs a lookup in the lis-
In these experiments, we use Linyperf [15] to establish

: ih K h H tening sockets hash table to assign the received packet to the
128TCI.D connections (wit 500_Bpac ets) tot _eDUTt at corresponding socket. The improvement is identical regard-
runs aniperf server. The duration of each testliS seconds.

» i i less of whether LRO is enabled or not and simply depends on
We utilize the Linux traf ¢ control mechanisniq) on the

client side to synthetically order the sending packets with a having a better packet locality.
! ! Yy Ically : wi Fewer CPU instructions per packet. Sinceiperf uses
given value ofSLF. We restrict the sending rate t8 Gbps @ Perp ’

forci | TCP stack t hibit StF at hiah multiple threads to serve clients' requests, wisr is small,
as ocrjcmg atrea v h sdaco c')[heXDIUITa'Zpe a mlt? the scheduling routines of the Linux kernel are called more
speeds is extremely hard. On the DUT side, we resfr frequently to switch amongerf threads. By increasing
to use only one core to clearly delimit the bene ts of packet

dering f tential artefacts introduced b leli SLF, each thread is able to handle multiple consecutive
ordering from potential artetacts introduced by parallelism. packets (ideallySLF packets) within a single scheduling
Lack of locality makes TCP accelerations ineffective.A

; ) , - round of the Linux kernel. Consequently, the number of ow
variety of TCP accelerations have been devised to mitigate they, ,  yjing routines and executed CPU instructions decreases
effects of the increasingly faster NICs' transmission Speedsdramatically with or without LRO enabled (see Fig. 2). LRO

on the relatively stable CPU speed. In this experir_nent, We further reduces the average number of CPU instructions per
show that the most notable of these accelerations, i.e., Largepacket thanks to the creation of super-frames of packets.
Receive Of oad (LRO), is ineffective with low traf ¢ locality.

Ideally, LRO should combin8LF consecutive packets of
the same ow received at the NIC into a single “super-frame”,
removing all the Ethernet & IP headers from the merged
packets and possibly coalescing redundant packets, such as
TCP acknowledgements. However, interleaved packets from
different ows prevent LRO from merging consecutive pack-
ets which leads to inef ciency of LRO.
The blue boxes of Fig. 1a show that LRO performance
is improved signi cantly when the spatial locality factor in-
creases fron to 16, i.e., more consecutive packets in a ow
arrive at the DUT. This increase 8LF reduces the number
of CPU cycles per packet 9% (from ~10k to ~3Kk), which
shows low traf ¢ locality harms TCP acceleration by LRO. Figure 2: Impact of packet spatial locality on CPU instruc-
Even without LRO (red boxes in Fig. 1a), the number of CPU tions per packet of aiperf server, with or without LRO.
cycles per packet decreases by 53% with an incre&lirg



(a) 28" (errorbars) and 50 (boxplots) percentile latencies. (b) 75" percentile latency.

Figure 3: Impact of spatial locality on the forwarding performance of OVS 2.13.9 using the Linux kernel v5.3 data path.

Takeaway. From this experiment we conclude that the per- OVS setup choice.Due to the fact that the EMC is anway
formance of today's high-speed networking applications is associative cache (similar to a modern CPU cache), molyt
highly dependant on the spatial locality of the received pack- of 213 entries can be used to store any given ow. In OVS ver-
ets, as this impacts cache-miss ratios and the number of CPWsion 2.13. = 2, implying this cache will likely exhibit high
instructions per packet. Based on Fig. 1a, we observe that syseontention even when the number of ows is much smaller
tems without LRO acceleration but with good spatial locality than the EMC. Measurements of these OVS caching schemes
of packets (i.e.SLF = 16) performbetterthan systems with  showed that EMC does not yield the expected levels of perfor-
LRO but with poor locality of packets (i.eSLF < 5), making mance improvements over the SMC [23]. Speci cally, EMC

it bene cial to process ordered streams of packets. slightly outperforms the SMGnlywith low numbers of ows

(< 200, while SMC offers higher performance with more
ows [23]. We veri ed this through our own experiments,
hence we disable EMC to achieve higher performance.

This section quanti es the effects of locality on the per- OVS experiment. We deployed OVS 2.13.9 on the DUT
formance of the kernel-based Open vSwitch (OVS) [16]; with a data path through the Linux kernel v5.3 of the DUT.
a widely deployed production quality multi-layer software The forwarding behavior is de ned by two sets of OpenFlow
switch. Many Virtual Machine (VM) and container-based V1.4 rules with 1k and 10k entries. These rules classify input
cloud platforms (e.g., VMware NSX-T [17], OpenStack [18], Packets based on their source and destination Ethernet and
Red Hat's OpenShift [19], and Kubernetes [20]) use OVS. IP addresses and forward matching packets toward the traf ¢
OVS classi cation pipeline. Upon a packet's arrival, OvS  receiver through the same port (i.e., the Mellanox port of the
emp|oys a mu|ti-stage classi cation p|pe||ne The rst Stage DUT attached to OVS) Only one rule in each rule set matches
is a213 entry Exact Match Cache (EMC) for frequently used the input trafc. We used a Data Plane Development Kit
ows. This cache uses a 32-bit hash of the packet's header(DPDK)-based traf ¢ generator to inject a tracelkdk User
which can be the Receive-Side Scaling (RSS) hash, as a keyPatagram Protocol (UDP) ows, where each ow consists of
mapped to a rule for the corresponding packet. In OVS 2.10,1500-Bpackets, at the rate &t5Mpps 66 Gbps. Fig. 3

a second classi cation stage called Signature Match Cacheshows the performance of the kernel-based OVS classi er,
(SMC) was introduced as an experimental feature. This cachefocusing on the 28 & 50 (Fig. 3a) and 78 (Fig. 3b) latency
stores a 16-bit signature for each ow along with a corre- percentiles.

2.3 Software Switching Effects

sponding 16-bit index into a ow table (with up @ rules), Packet ordering greatly bene ts OVS's caching scheme.
a total of 32 bits; hence, it is more memory ef cient than When no particular locality is enforced (i.&LF = 1), the
EMC, which stores the entire forwarding rule. 75" latency percentile (see Fig. 3b) ranges betwkgdus

If neither of the rst two cache levels matches an incoming 343 psand126 us300 psfor 10k and 1k rules, respectively,
packet, then that packet is classi ed by the kernel's Mega ow while lower latency variance is observed in Fig. 3a for the
cache [21]. This cache is based on the Tuple-Space SearcR5" and 50" latency percentiles. However, both latency and
(TSS) algorithm [22] that uses more aggressive bitwise wild- its variance substantially decrease with increaShé for
carding to aggregate multiple ows into a single match. Fi- both rule sets. The greatest improvement is observed for
nally, a miss in the Mega ow cache results in a packet redi- SLF 2 [20;24], where packet locality results i25 5
rection to the “slow path”, where packets traverse a pipeline - similar results occur for TCP packets. Wah-B packets, the effect of
of OpenFlow tables to derive their corresponding actions.  packet ordering is less profound, but still relevant.




(a) End-to-end latency. (b) CPU cycles per packet.

Figure 4: Impact of traf ¢ spatial locality on the packet processing latency and the CPU cycles per packet performance of a NAT
and a rewall (with and without rule caching) NFs.

lower 78" latency percentile2 lower medians, and 15- it takes to fetch the appropriate NAT table's row from the
22% lower 2% latency percentiles with negligible latency memory, greatly decreasing the available useful processing
variance. For higher values of the spatial locality factor (i.e., time and the capacity of the NF to serve incoming packets. In
SLF 2 [28;32]), we observe a slight latency increase com- contrast, when input packets are partially ordered by ow, the
pared to the lowest attainable latencies shown in this gure. NF amortizes the cost of this NAT table lookup over several
This behavior is not observed in the other experiments in this consecutive packets within the same ow, thus reducing the
section, suggesting the limits of packet ordering be studied average processing time needed to serve each packet.

on a case-by-case basis. Firewall NF case (without software-based rule caching).
10k rules at the cost of 1k rules.An equally important ben-  \ye deployed a rewall NF implementing a tree-based Access
e t of this use case is shown in the caseSifF 2 [20;24], Control List (ACL) with 20k rules on the DUT. We consider
where the red and blue boxplots and error bars in Fig. 3 ex-yyg different variants of this rewall. The rstvariant assumes
hibit very similar ranges. This means that packet ordering ng ryle caching, thus it executes the matching algorithm for
amortizes the additional cost of a 10x larger classi er (i.e., ggch incoming packet. Since all packets of the same ow
10k vs. 1k rules) by making the most out of OVS's caches.  typjcally match the same rule, then with an increasing spatial
) locality factor, we expect a reduction in the frequency of
2.4 Network Functions' Effects fetching data (rules) from main memory into the system's
cache(s). The blue boxes in Fig. 4 show similar trends as in
the previous experiment, i.e., an increasing spatial locality
factor improves the performance of the rewall in terms of

In addition to network stacks (82.2), packet locality may also
affect more advanced NFs. To investigate this, we imple-
g;?é?glm()etl\\/lv i?k”jA\EZfécs:lslg}(r a[ﬁgl]ét?o?]t?ltliﬁ'sﬁ nlriig%”;;d a both average end-to-_end latency (Fig. 4a) and number of CPU
we allocate two cores per NF with one RX queue per core cycles per packet (Fig. 4b).

to show that the bene ts of packet locality is not limited to  Firewall NF case (with software-based rule caching)The
single-core scenarios. We will further discuss the impact of second variant of this rewall NF implements a simple in-
number of RX queues on the DUT performance in §5.1. In memory rule cache. This cache stores the hash of the last
these experiments, the traf ¢ generator emuldt@sclients served packet and the matched rule. For each incoming packet,
sending a total of 20 milliol-KB UDP packets to the DUT  the rewall calculates the packet's hash value, and if it is the
with a total rate of 50 Gbps(6:2 Mpp9 and a given spatial ~ Same as the entry in the cache, then it assumes that the packet
locality factorSLF. Fig. 4 shows the average end-to-end la- Will match the same rule as the previous packet. However, if
tency and the number of CPU cycles per packet for these twoafter executing the rule the new packet does not match the

applications. rule, then the cache will be updated with a new matching rule
NAT NF case. We deployed the NAT NF on the DUT. Fig.4 and a new packet hash. The green circles in Fig. 4 show faster
shows that the end-to-end latency decreases frlogsto convergence to the minimum values compared to the rewall
74 psas the spatial locality factor increases fr@hF = 1 withoutcaching as the rewall's cache matches an increas-

to SLF= 32 WhenSLF = 1, some packets are dropped ingly large fraction of input packets (i.6SLF 1 packets for
since for each packet, the CPU must wait for the many cycles @ givenSLF) without invoking the rewall’s classi er.

“We also deployed a chain of NFs on the DUT as a complementary Packet spatial locality analysis. Looking closely at the per-
experiment in Appendix A.1 packet CPU cycle curves shown in Fig. 4b, we note that the




2.5 Summary

In this section, we explored the effects of spatial locality of
network data by conducting experiments across Linux net-
work stack and DPDK-based stateless & stateful NFs at vari-
ous levels of a system's software stack. The common denom-
inator of this study is that packet ordering greatly increases
the utilization of a server's memory hierarchy (mostly CPU
caches), which in turn results a substantial improvement in
key performance indicators, such as latency, throughput, and
CPU utilization.
We leverage these insights to design a system that vertically
Figure 5: Impact of spatial locality on the number of L1 (i.e., hardware to application layer) exploits the bene ts of
misses per packet for a Firewall (w/o caching) and NAT NF. packet ordering (see §4) and demonstrate complementary
results using additional real world applications (see 85).
Before this, we investigate whether today's Internet traf c

data ts an equation of the forrmost= a (1=SLF)+ b, exhibits a low or high spatial locality factor (see 83).

whereb is the CPU cost of processing the data that has al-

ready been accessed and is in the cache, hence itis the asym@  Packets Order in Real-world Traf c

totic limit whenSLF is large. In contrasa (1=SLF) is a

weighted version of the cost of getting the data that can be This section analyzes a trace from our organization (i.e., a

shared, e.g., wheBLF = 2, the cost per packet is amortized University) to understand the spatial & temporal locality in
over two packets. realistic trafc (83.1) and explores opportunities to in-

) ) crease traf ¢ locality by reordering packets (83.2). Our

In the case of the NAT, whe8LF> 1the main costisthe  gnalysis shows that 60% of the packets belonging to a
lookup of the appropriate replacement values in the NAT table G\ ‘are interleaved with packets of other ows, hence
and this Iook'up only has to be QOne once for the rst packet, yon-ideal for high-speed packet processing (based on §2).
hencea  1times the cost of this lookup. In the case of the \joreover, today's networking trends further exacerbate
rewall, we expect that for a given number of rewall rulds, this — as novel congestion control mechanisms (e.g.,
bug F whenthe rewall rules cannot be cached (i.e., when ggr [25], Timely [26], HULL [27], and Carousel
the rules cannot tinto the cache), hence the rewall rules [28]) advocate pacing packets to ght “bufferbloat”, i.e.
have to pe repeatedly loaded and hence f[hg cost cannot bﬁeeping queue occupancy in routers' buffers as low as
shared (i.ea  0). However, we see that this is not the case ossible.  Even the built-in self-clocking of traditional
in Fig. 4, as an application still bene ts from processor-based Tcp congestion control mechanisms [29], which inherently
caching of the data evesithoutsoftware-based rule caching. spreads packets out over time to avoid congesting a link, is

Serving packets at the speed of L1 cacheWe now high-  harmful to cache-optimized high-speed network communica-
light the fundamental role played by core-speci ¢ L1 cache tion. In 84, we advocate rebuilding per- ow traf ¢ bursts as
in enhancing the performance of the above NFs. To measureclose as possible to the servers that process them.
cache-related events, we utilized the Limetf tool during Trace statistics. We capture@®8 minof traf ¢ from our cam-

the execution of the experiments shown in §2.4. Since thePUS to & from our upstream network provider. The outgoing
NFs' data size (NAT table and rewall rules) are smaller than traf ¢ (i.e., from the campus toward the Internet) had 420
the LLC and L2 capacity, we see almost no LLC and L2 Million packets with an average size b§6943 B and the

misses; hence, the reduction in the number of CPU cycles isincoming traf c (i.e., from the Internet toward the campus)
mostly due to better utilization of the L1 cache. had 378 million packets with an average sizeB8282 B.

Fig. 6 shows the TCP ow size distribution for this traf c.

Fig. 5 shows the effect of locality on the number of L1 | the rest of this document, we refer to the outgoing and
cache misses for both the NAT and rewall experiments. In jncoming traf ¢ as the TX and RX traces, respectively.

both cases, we observe a substantial decrease in the number
of L1 cache misses. Our analysis reveals that we can observ . .
the effects of ordering even on the L2 and LLC misses by%'l Spatial & Temporal Distance ) _
deploying a memory-intensive NF (e.g., Deep Packet In- The performance bene ts of packet spatial locality were
spection (DPI)) or a chain of multiple NFs on the DUT shown in §2 with the greater the number of consecutive pack-
(Appendix A.1). Our results demonstrate that better utiliza- €tS belonging to the same ow (i.e., the spatial locality factor),
tion of core-speci ¢ caches is the key for increasing the NFs' the greater the bene ts. Additionally, we concluded that even
performancend ordering packets minimizes cache misses. @ small spatial locality factor (e.gSLF = 5) could yield a



Figure 6: TCP ow size distr. of the analyzed trace with a Figure 8: Number of per- ow switches for different batch

log. x-axis. The RX trace has 4M ows; the min., avg., sizes (selected according to [14]: 32/64 for Linux kernel and

and max. ow sizes (in #packets) are 1, 63, an@9M, resp. DPDK; 256 for VPP; and 1024 for GPU/NIC of oad).

The TX trace is composed of 2M ows; the min., avg., and

max. ow sizes (in #packets) are 1, 137, and8M, resp.
higher rates (e.g., multi-tens- & multi-hundred-gigabit rates),
the spatial distance wouldtuitively be much larger, which
further reduces the locality. As shown in 82, this lack of
spatial locality can dramatically degrade performance, up to
factor of3 . Fig. 8 shows the number of switches across dif-
ferent ows that an application should theoretically perform
when processing different batch sizes of packets. The number
of switches can be more th&n larger when the packets are
unordered. Frequent switching could cause detrimental perfor-
mance events (e.g., context switches and/or cache evictions),

(a) Spatial distance (#Packets). (b) Temporal distance (us). the number of which depends on the system's microarchitec-

ture (e.g., cache hierarchy) and the application characteristics

Figure 7: Distribution of the spatial & temporal distance for (e.g., the type of processing and the size of the per- ow state).

the campus trace. (Note that the x-axis is logarithmic). Temporal distance. Fig.7b demonstrates that temporal
distance between consecutive ow packets in a ow is

I . N typically smaller than a few tens of microseconds, making it
signi cant improvement, as was Sho""f‘ in Fig. 4. prever, possible to reduce the spatial distance by buffering packets
the improvements depend on the traf ¢'s actual spatial local- for a short time so that they can be reordered. The potential

'tg' There::ore, in this SE(?tIOI"l, we e>framollne huworderledl for reordering of traf ¢ destinedfriginatedto/from two cloud
the trace from our organization is. To do so, we calculate providers is described next.

the spatial and temporal distance of packets in every TCP
ow. Spatial distanceshows the number of packets between
two consecutive packets of the same ow and can be used to

assess opportunities to exploit cache memories. The highegye identi ed the top hundred IP addresses of the TCP connec-
the spatial locality, the greater the number of opportunities tions, which appeared in independent ows of the TX trace.
to increase cache-hit ratiofemporal distanceneasures the  From those, we select those of two popular cloud providers,
time between two consecutive paCketS of the same ow and referred to aﬁ:'oudl andc|oud2f_ We Ca'cu'ated the prob_
can be used to estimate how long one would have to wait for ability of receiving packets of the same TCP ow within
another packet in order to reorder packets and increase spatiagjifferent xed-size time windows to determine whether by
locality. Fig. 7 shows the histogram of these metrics for the waiting for a short amount of time we can reorder packets to
campus trace. These results do not consider single-packefnakeper- ow batches of packets, i.e., regenerate high spa-
ows”, as these metrics are unde ned for such ows. tial locality. Additionally, since user-space packet processing
Spatial distance. Fig. 7a shows that the spatial distance of frameworks (e.g., DPDK) use a xed batch size for process-
the per- ow packets are larger than one packet in ~60% of the ing packets (typically 32 for a DPDK-based application), we
RX trace (without single-packet ows) and ~75% of the TX  assume that up to 32 packets per ow can be bufféré&iy. 9
trace (without single-packet ows) —i.e., theredsleastone shows the distribution of batch sizes for different buffering
packet between consecutive packets of the same ow. Thetimes. These results consider all ow sizes, including single-

rate of our campus trace is2:2 Gbps which underestimates  packet and mice ows which dramatically reduces the size
the values reported for the spatial distance. In networks with

3.2 Potential of Per- ow Ordering

TTable 1 (in Appendix A) shows the statistics of these ows.
*Based upon the source addresses, we expect that some of these are  ¥In some cases it might be possible to buffer up to ~300 packets, see
likely to be part of SYN attacks. Fig. 23 (in Appendix A).




(e.g., number of per- ow queues) in comparison to hardware
alternatives. On the other hand, similar to many networking
software systems, the main design challenge is ef ciency in
terms of both time and space complexity: one needs to strike
a delicate balance between the complexity of the reordering
procedure, whicltonsume€PU cycles, and the gains at the
application/NFs, whiclsavesCPU cycles; Hence, it is crucial
for Reframer to employ an optimized data structure that takes
a short time and space for reordering packets regardless of
Figure 9: Impact of increasing the waiting time on the proba- jncoming packets rate and the number of concurrent ows.
bility of receiving packets in theame TCP ow(i.e., packets  \wjth Reframer, the incoming packets are ef ciently buffered
going to the same end-host, the same core, and the samgn reordered and then delivered to their destinations. Fig.10
application). shows the operation of Reframer when a stream of packets
belonging to three ows (i.e., green, blue, and brown) arrive

of the per- ow batches. Clearly, increased buffering time is @t the Reframer.

positively correlated with receiving more packets in the same Flow classi cation. Reframer maintains two main data struc-
ow. However, the statistical properties of traf ¢ (e.g., acloud tures to reorder packets: @w classi cation tableand aush
service) should be taken into account when ordering packetslist. For each ow, the ow table stores the timestamipg

For instance, it is possible to make per- ow batches of size When the rst packet of that ow has been added to the batch
6, even in32-ustime frames, for 25% of the incoming trafc ~ Of that ow. It also stores a pointer to the list of the buffered
from Cloudy; whereas 25% of the outgoing traf c toward Packets for that ow. The ush list is a double-linked list
Cloud could only be made into per- ow batches of size 4.  that stores ow identi ers sorted by timestamp described in
Summary. This section showed thahost of the ows the ow table. Reframer updates all these data structures in
in a campus trace could benet to some extent from constant time for a variety of operations: buffering of a packet
ordering, as it increases locality, i.e., decreases both spatialn the ow table (when a ow entry already exists), adding/
and temporal distances. However, the improvements depend€moving ow identi ers to/from the ush list, nding the

on the traf ¢ characteristics and type of service. Ordering of ©Oldest ow identi er, and emitting a batch of packets. Only
larger ows can potentially lead to much bigger improvements insertion of new ows in the ow table is not performed in
(see the tails of the box plots in Fig. 9). Therefore, a cloud constant time because of the cuckoo-hash table. Additionally,
provider/operator might only apply reordering to speci c Reframer stores only a few bytes of metadata per ow that
services and/or tune the waiting time based on the Service@llows CPU cores to work at the speed of L1 and L2 caches.
Level Objective (SLO) and the ow rate. In case the number of packets in the ush list meets a
con gurable limitation maximum burst sige Reframer
passes the batch to the scheduler.

Buffering Time. The ush list can buffer ows for a maxi-

As we have shown in Section 2, receiving unordered packetsmum amount of time, which we call thriffering time(Tpu).
leads to high cache misses and more CPU cycles per packeflhe optimal buffering time mostly depends on two param-
which increases the cost of packet processing in networkingeters:(i) ows' average throughput angli) the end-to-end
devices. This section presents our proposal to achieve indatency between a Reframer instance and the destination. The
creased end-to-end data locality (both temporal and spatialfformer parameter affects the possibility of receiving multiple
of packets in each ow. Our solution maximizes locality packets of the same ow in a short time window. For instance,
and is compatible with today's trends in Internet congestion the inter-arrival time 0fLl000 Bpackets i3 usat 1 Gbpsand
control paradigms that pace packets. We leverage the idedReframer can rebuild a per- ow batch with up &packets

of brie y buffering, delaying, and reordering the (possibly by buffering packets fo4 us The latter parameter sets the
paced) incoming packets to increase spatial locality for net-upper bound for the buffering time., i.e., a higher end-to-end
work traf c. As a result, Reframer pays the imposed price latency provides more exibility to wait for packets. It is
of receiving paced packets only one time at the beginning possible to adjust buffering time by automatically calculating
of a NFs and applications chain instead of allowing every both of these parameters; However, in the current version of
single NF pays that for itself. Reframer is developed as a Reframer, it should be con gured manually by an operator.
softwaresolution that uses CPU cycles to classify ows and Reframer collects additional information to track its ef-
create batches with higher locality. Following the trend of ciency, i.e., (i) it measures the amount of time that ows
Network Functions Virtualization (NFV), advantages of soft- were being delayed without actually receiving more packets,
ware network functions like Reframer include more exibility, and (ii) it records the average amount of packets per batches.
faster development cycles, and nearly no resource limitation These statistics could potentially enable Reframer to ne-tune

4 The Reframer Design



Reframer supports an integrat&aypass” mechanism.
Thus, Reframer allows an operator to de ne class(es) of traf ¢
that should not be reordered by Reframer based on any given

eld of the packet (e.g., IP DSCP eld). We implemented
the obvious case of TCP SYN, as a TCP SYN will never be
followed by other packets; therefore, a SYN is never delayed.
Additionally, in 85.3 we will show that bypassing mice ows
may increase the bene t of Reframer because the possibility
of receiving multiple packets of the same mice ow in a pe-
riod of Tpysr is low and it is not worth to delay such packets.
However, in this work, we have not implemented a heavy
hitter detection module, which is left for future optimization
and it is not discussed here.

Reframer Implementation. We use FastClick [24] to build

a Reframer prototype, which enables many placement scenar-
ios at high speed as will be shown in 85. The classi cation
and ow-state managementis handled by its MiddleClick [30]
extension, thus the code is only thousand linesiong

Figure 105 Reframer consists Btomppnents(l) aclassier 5 Reframer Evaluation
arranges input packets to a ow tabl@,) a scheduler ushes
ows from the table upon a timeout or burst-siZéj) a com- This section assesses the feasibility and performance of
pression module coalesces packets to eliminate redundancyReframer in increasing the temporal and spatial locality
of a stream of traf ¢ by brie y buffering and reordering

the buffering time by nding the sweet spot between these Packets. We evaluate performance at hogh-packetand
two statistics for each application. per- ow granularity in two scenariogi) to improve the per-
Priority. When either the ow classi er informs the sched- packet processing throughput of an NF service chain(hd

' : . to reduce the Flow Completion Time (FCT) of TCP traf c
uler of a full-size batch that is ready to be forwarded or the streams served by an HTTP web server. Our results show
ush list contains ows reaching the buffering time, the sched- y '

. that the NF chain throughput can be increased by ~84% and
uler computes an ordering of the batches based on some coqhe HTTP ow completion times be decreased by 100s of
gurable priorities. b y

The oldest batches in the ow table are extracted from the millisecondsby simply delaying packets by few 10s or 100s

head of th hlist. Th hedul h d of microsecondsSpeci cally, this section answers the follow-
€ad o the us . 'S.t' € scheduler rese_tst € per- ow data ing key questions about the opportunities and challenges in
entries upon emission of the corresponding batches.

R ] reordering packets(i) Can Reframer increase the packet
In the example shown in Fig. 10, we assume the maximum processing throughput of an NF chain by increasing the

batch Size '3_1 packe_ts and the maximum buff_er timeis equal {raf ¢ locality of a real-world traf c trace (85.1)?(ii) How

to 6 time units. At timet = 7, Reframer_recelves the _four_th do the Reframer bene ts vary depending on where it is de-

packet of the blue ow and at the same time the buffering time ployed (separate or same server as the application, and

of the green ow expires since the rst packet was received then on a CPU core or a SmartNIC (85.2)i) How can

at time 0. Both batches are handled by the scheduler for Reframer handle latency-sensitive traf ¢ (§5.3)9) Can

transmission. Reframer's scheduler supports a variety of Reframer reduce the ow completion time of an HTTP web

priority models for ordering batches ready to be sent: server (§5.4)?

Shortest ow rst prioritizes mice over elephant ows. Testbed. We use the testbed presented in §2.1, running an
Oldest ow rst prioritizes older over newer ows with  NF service chain of the NAT and the Firewall presented in
respect to the timestamp of the rst packet; and §2.2 augmented with a router and a ow statistic NF. First,
Oldest ow in the queue rst prioritizes older over newer e place Reframer between the traf ¢ source and the DUT,
ows with respect to their waiting time in the queue. running on a dedicated Intel Xeon E5-2667 CPU clocked at
We envision a tailor-made priority model based upon the 2:3 GHzand128 GBof RAM at 2133 MHz This machine
network operator's SLOSs. has two Mellanox ConnectX-6 NICs. While this introduces

Compressor & Output. Before leaving the Reframer, each the cost of a supplementary machine, it gives us an understand-
batch of packets of the same ow passes through a per-ing of themaximunperformance achievable when processing
protocol optimizer, e.g., multiple TCP ACKs are coalesced if the analysed traf c traces.

all packets are in order between ACKs. In the future, we will *The source code is available at: https://github.com/hamidgh09
also look at payload coalescing if the MTU allows it. IReframer
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Figure 11: Traces characteristics - the X-axis is the number
of multiples of our campus trace played in parallel

Workloads. We use two different types of workloads in our

experiments(i) per-packet experiments on the NF chaimd

(ii) per- ow experiments with the HTTP web serv&heper-

packet experimentsare based on our campus traf ¢ trace

described in 83 with millions of ows in total, a throughput of

~2:2 Gbps and an average packet size dfkB. To evaluate

Reframer with a higher traf ¢ throughput, we split the traf c (b)

trace into 32 consecutive windows, eact26fseconds, and

we replay them in parallel from our traf ¢ generator. When

splitting the trace, we rewrite the ow identi ers so that any

two windows do not have any ow in common (which would

otherwise increase the traf c locality of the original trace).

Figure 11 shows the number of ows and throughput when

running a number of parallel trace segments. Forpée

ow experiment with the HTTP server, we generate HTTP

requests of 1IMB les from 4096 clients using WRK [31]

towards an NGINX web server. ©
c

5.1 Packet-Level Experiments (NF Chain) Figure 12: Performance of Reframer versus a baseline NF

In this experiment, we show théi) Reframer is effective ~ With increasing load when processing a real trace: (a) CPU
in increasing the spatial traf ¢ locality (i.e., high&iLF) of cycles per packet, (b) Throughput, and (c) Latency.

our real-world traf ¢ trace and, consequent(yi,) increasing

the throughput of an NF chain. Since the trace is replayed, Figure 12 shows the effectiveness of Reframer in improving
we focus orper-packetmetrics (e.g., CPU instructions, la- the performance of the NF chain for different workloads (load
tency) and the throughput of the NF chain. The NF chain con-is expressed as the number of parallel trace segments). At all
sists of a Flow Statistic TrackerRoutet Firewall NAT loads, in Fig. 12(a), we see a substantial decrease in the num-
chain, all implemented in FastClick [24] using state-of-the- ber of CPU cycles when using Reframer. The reason is the
art NF elements and DPDK [32] for I/O. We install 10k increase in spatial locality from an average of ~1.2, i.e., near
rules into the rewall and 200 different routes into the router the minimum possible spatial locality, to an average of ~1.9,
elements. We deploy the chain in a run-to-completion ~2.9, and ~3.3 at the output of the Reframer vilifhus 64 ps
model and we consider it as thgaselinein all packet- and128 psof buffering times respectively. Fig. 12(b) shows
level experiments. To measure the impact of Reframer,that at high loads, throughput continues to scale well for
we compare the NFs chain performangith andwithout Thutf= 64 usand128 us up to ~64 Gbpga 84-100% improve-
deploying a Reframer instance in front of the chain on an ment) while the throughput peaks at8-Gbpsfor Ty=16 us
external server. Note that the latency is end-to-end in all the In contrast, the baseline throughput peaks3g 6 Gbpsand
experiments which meansiitcludesthe time spent in the Re-  then falls - as the DUT cannot keep up. Fig. 12(c) shows that
framer buffers. In this experimer®,CPU cores are assigned at low loads, the end-to-end latency is roughly the baseline
to the NFs chain witl8 RX queues on the NIC (one queue per latency plusTyys when using Reframer. However, we see the
core). The NIC uses RSS to map traf c among queues. We Reframer bene t appears as the load increases to maximum
evaluate alternative deployments with Reframer co-located capacity of the NFs chain. We discuss and evaluate how to
with the NF chain in 8§5.2. reduce the additional latency introduced by Reframer in §5.3.



Figure 13: Reframer vs Baseline with various number of (&)
hardware RX queues (up to the max. supported by the NIC).

(b)

_ Figure 15: Impacts of Reframer when collocated with the NF
(2)DUT throughput. (b) Reframer capacity. chain: (a) Cycles per packet and (b) Throughpuit.

Figure 14: Maximum throughput of Reframer and DUT with
different number of cores. vs. using hundreds of RX queues for the baseline case.
Packets' locality bene t persists with various number of

) . DUT cores. We also show that Reframer bene ts do not de-
High number of RX queues has smallimpactonthe DUT o4 o the number of DUT cores. To do so, we measured
throughput. We repeated the above experiment W80 o mayimum throughput of DUT by running the experiment
parallel trace segments and various numbers of RX queuesy it various number of cores assigned to DUT. Reframer's
on th_e DUT in a range a8 to 500 (which is the maximum buffering time is set td 28 usin all cases. Figure 14a demon-
possible number of RX queues.on the DUT's NIC). We Pre- strates that the throughput increase rate is almost the same for
serve the total number of descriptors aro@i®2by setting different number of cores

. - 514 [logN] i N i

per queue descriptors toax 32, 2° ) whereN isthe  paframer scales almost linearly with the number of cores.
tota}I numbgr of RX queues. In this experiment we show tha}t As we discussed in 84, Reframer bene ts from an optimized
lby w;prgasmg thefnumber of RX q“e‘,ifls the a;/erage spattialyata structure to classify, order, and ush packets in a constant
ocality increases from ~1.2 to ~2.5 without Reframer. HoW- jo oy stress test reveals that Reframer is able to handle up
ever, despite the improvement in the traf ¢ locality, Figure 4, 5 Ghngyith only one core Here, we increase the offered
13 shows only a slight increase in the maximum throughput load gradually until we see1% packet drops in Reframer.

of baseline. The main reason is,. haying hundreds _Of RX Figure 14b shows that Reframer's capacity increademst
queues leads to more empty polling in the DUT which is jine41y when increasing the the number of cores.
costly and negatively affects the performance. It is worth

noting that, fetching incoming packets from RX queues is

hardware-speci ¢ and depends on the data structures tha®-2 Same-Server Deployment

NICs are using to process incoming packets; hence, opti-In the previous section, we showed that deploying Reframer
mizing algorithms and data structures in future NICs may on a dedicated server increases spatial and temporal locality,
lead to better results. However, discussing the future roadultimately resulting in signi cant performance gains. In the
map of NICs is out of scope of this paper. On the other following experiments, we evaluate deploying Reframer on
hand, when Reframer is located between the traf ¢ source andthe same server where an application is running. Using the
DUT, increasing the number of DUT RX queues has a nega-same NF chain (Baseline) as previously, we consider two
tive impact on the throughput because incoming packets aredeployments(i) chaining Reframer with the NF chain, i.e.,
already sorted and classifying ows in different hardware the entire chain running to completion on the same CPU
gueues does not increase packets' locality. So we set 8 RXcores (referred to as-chaindeployment), andii) deploying
gueues (one per core) for DUT when Reframer exists in the Reframer on a SmartNIC.

network. Finally, we seB3%more throughput with Reframer  In-chain deployment. We evaluate the performance of Re-



(a) (@)

(b) (b)

Figure 16: Impacts of Reframer when collocated with the NF Figure 17: Impact of Reframer when of oaded into a Smart
chain: (a) Average latency and (b) 99.9th percentile latency. NIC which precedes the NF chain: (a) Cycles per packet, (b)
Throughput. Latency is given in Appendix A.2

framer for then-chaindeployment versus theaselinefor dif-
ferent buffering times. Generally, increasing buffering time in
Reframer will lead to more packet locality, since it increases qnstraint/limitation con rmed with Mellanox.

the possibility of receiving more packets of the same ow; 4.\ oblivious batching is highly suboptimal. We also
Hence, we see a considerable increase in the DUT throughputcomloare Reframer with a Batchy-like [14] implementation
and reduction in the end-to-end latency. Fig. 15 shows that by, ritten in EastClick. Batchy is a state-of-the-art packet
placing Reframer right before the service chain, the n“mberprocessing system that buffers packets ima-oblivious

of cycles per packet decreases with increasing buffering ime p,, yner at multiple locations in an NF chain, i.e., Batchy does
while throughput increases Bp%when Reframer buffers ot create bursts of packets from the same ow but mix all
packets for 64 us. To evaluate the impact of Reframer on the ows that must be processed by the same NF element. We

packets end-to-end latency, we restrict the incoming packetypqerye that Batchy improves the throughput of the chained
rate to -30 Gbpswhich is less than the maximum capacity of - \zg by 496, whereas Reframer improves throughput by 48%.
DUT in the baseline modoe. In Fig. l? we can see the averagerpege resylts corroborate our analysis in section (§2), where
latency is reduced bg6% with Tp=64 ps Additionally, e showed how detrimental itis to process streams of packets

Reframer Improves th? tail IaFency by&% even when it . that are highly interleaved between different ows as opposed
is collocated with service chain on the same server. In this to per- ow batches.

experiment, latency bene ts start to fade gradually from a

speci ¢ buffering time because the cost of delaying packets ..

surpasses the processing speed-up. The baseline numbe%3 Latency-Sensitive Flows

are mostly the same for all x axis values because we have ndn our previous experiments, Reframer delayed all types of
buffering in baseline mode. The uctuation in baseline values packets for &l interval, possibly increasing the FCT or
is inevitable because DUT cores are at a maximum load.  packet processing time of short ows. We argue that an op-
SmartNIC deployment. As a proof-of-concept deploy- erator could explicitly tag which traf ¢ classes should be
ment for of oading Reframer into a NIC to save CPU core delayed to improve application throughput. To evaluate the
resources on the server, we deployed Reframer on two ARMimpact of delaying only large ows, we ran an experiment
cores of a Mellanox Blue eld SmartNIC — equipped with  similar to the one described in 85.1, but we explicitly ag only
16 64-bit Armv8 A72 cores and twb00 Gbpsports while large ows so that Reframer can batch them while bypass-
the NFs chain works on a single CPU core. Fig. 17 shows im-ing the un agged packets and show the results for increasing
provements in throughput similar to the in-chain deployment. number of parallel trace segments in Fig. 18. Compared
We discovered that the performance using a single ARM core to the case where all ows are delayed, the throughput of

was limited by the current Mellanox drivers for the cards, a
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Figure 18: Reframer provides differentiated services by prior-
itizing small ows over large ows which are bypassed.

the NF chain slightly decreases (between 0% and 4% ac-
cording to the number of parallel trace segments), while the
latency of the packets belonging to the small ows align with

the best of the baseline (at low loads) or the latency of Re-
framer minus the buffering delay (at higher loads). Somewhat
surprisingly, Reframer achievémwer latencieghan the base- (b)
line for small ows acrossll traf ¢ loads by simply delaying
and reordering only large ows. We leave the detection o
heavy-hitters, for instance detecting which ows could have
generated multiple larger bursts, as future work.

¢ Figure 19: Impact of Reframer when reordering packets of
HTTP ows: (a) Throughput and (b) FCT.

5.4 Flow-Level Experiments (HTTP Server) 6 Related Work

In this experiment, we evaluate Reframer to assess its impacBatching. Previous efforts [14,24, 335] have shown the

on aweb server application using TCP connections to dispatchiMPortance of processing entire batches of packets rather than
les of 1MB to a set of 2048 clients continuously fetching Ndividual packets (not necessarily belonging to the same
les. By controlling the rate and number of clients' requests, ©W) in order to amortize the costs of the interrupts in the NF
we are also able to substantially increase the throughput ofPrOcessing system (e.g., Batchy [14], SCC [35]). Our work
the test and exploit th&00G NIC interfaces. To simulate IS ©rthogonal to these approaches because Reframer improves
4096 independent clients with more realistic latencies, we 1€ Pérformance of a server application in a “transparent” way,
place a machine in-the-wire that delays packets in per- ow ©-9-» Py reordering packets on the NIC or before being sent
queues by $0ms ~2ms Hence, each connection exhibits to the application. Moreov_er, existing packet processors do
slightly different delays, for an average@@msdelay. The not increase t_h_e traf ¢ Iocgllty at_ the per- ow Ievel,_ which we
focus of this experiment is on ow-level metrics, with the SNOW to be critical to achieve high performance in 85.2.

goal to check whethe(i) Reframer improves the FCT of Traf c coalescing. Receive Side Coalescing (RSC) [36] aka
the dispatched les anii) the buffering delays cause any LRO accelerates TCP processing by merging consecutive
troubles to the underlying congestion control mechanism (i.e., Packets of a TCP ow into a single frame. Unfortunately, as
TCP Cub|c) We compare thse"neagainst Reframer. shown in §2.2, hardware-based LRO breaks as soon as packets
We selected NGNIX 1.14 as the web server running on 16 are interleaved. Similarly, the software implementation of
cores of the DUT, while Reframer runs on a dedicated NF LRO in the Linux kernel, called Generic Receive Of oad
machine using 6 cores. Reframer reorders packets in botf{ GRO) [37], suffers from the same problem.

directions, aggregates TCP ACKs from the client to the server,Packet schedulers.We distinguish betweehardwareand

and eventually reorders out-of-order TCP packets. Fig. 19(a)softwarepacket schedulers. Hardware packet schedulers typi-
shows that Reframer increases the application throughput bycally try to realize different approximations of universal sched-
20%. The observed improvements are due to the increase irulers mapping packet ranks to the available queues on the
spatial locality froml:25to 14. Fig. 19(b) shows that despite  hardware (e.g., [383]). Another set of hardware packet
introducing delays in the order of microseconds, Reframer schedulers (e.g., [4%2]) focus on network-level optimiza-
reducesFCT of TCP connections by fractions of a second tion in datacenters (e.g., minimize traf ¢ congestion). None
(from 3:4sto 3:19). ACK coalescing accounts fé# of the of all these works have explicitly looked at the possibility of
throughput improvements but does not affect the FCT. batching and scheduling packets to increase traf ¢ locality at
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rewall, and a Flow statistics counter (FC) in a row, as a chain
A Supplementary Material of NFs. The DUT used CPU cores to serve the packets and

it is implemented in a run-to-completion model to exploit the
This section provides some additional material for this paper. Parallelism on the processors. All the other con gurations are

similar to §2.4.
A.1 Deploving a chain of NFs _ Since the deployed chain is both CPU and memory inten-

ploying sive, the scale of CPU cycles per packet and the end-to-end

In addition to experiments discussed in §2.4, we deployed alatency are higher in compare to individual NAT and rewall
chain of network functions on the DUT as a complementary experiments in §2.4. However, the results in Figure 20 con-
experiment. In this test, we connected a Router, a NAT, a rm that, regardless of the complexity of the implemented
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